Serotonin activates overall feeding by activating two separate neural pathways in Caenorhabditis elegans.
نویسندگان
چکیده
Food intake in the nematode Caenorhabditis elegans requires two distinct feeding motions, pharyngeal pumping and isthmus peristalsis. Bacteria, the natural food of C. elegans, activate both feeding motions (Croll, 1978; Horvitz et al., 1982; Chiang et al., 2006). The mechanisms by which bacteria activate the feeding motions are largely unknown. To understand the process, we studied how serotonin, an endogenous pharyngeal pumping activator whose action is triggered by bacteria, activates feeding motions. Here, we show that serotonin, like bacteria, activates overall feeding by activating isthmus peristalsis as well as pharyngeal pumping. During active feeding, the frequencies and the timing of onset of the two motions were distinct, but each isthmus peristalsis was coupled to the preceding pump. We found that serotonin activates the two feeding motions mainly by activating two separate neural pathways in response to bacteria. For activating pumping, the SER-7 serotonin receptor in the MC motor neurons in the feeding organ activated cholinergic transmission from MC to the pharyngeal muscles by activating the Gsα signaling pathway. For activating isthmus peristalsis, SER-7 in the M4 (and possibly M2) motor neuron in the feeding organ activated the G(12)α signaling pathway in a cell-autonomous manner, which presumably activates neurotransmission from M4 to the pharyngeal muscles. Based on our results and previous calcium imaging of pharyngeal muscles (Shimozono et al., 2004), we propose a model that explains how the two feeding motions are separately regulated yet coupled. The feeding organ may have evolved this way to support efficient feeding.
منابع مشابه
The pharynx of the nematode C. elegans
Motor control is a complex process that requires interplay among the nervous system, muscles and environment. The simple anatomy, well-characterized muscle movements and ample resources for molecular and cellular dissection make the pharynx of the nematode C. elegans an attractive model system for the study of motor control. The C. elegans pharynx shows two clear muscle movements that are essen...
متن کاملRecognition of familiar food activates feeding via an endocrine serotonin signal in Caenorhabditis elegans
Familiarity discrimination has a significant impact on the pattern of food intake across species. However, the mechanism by which the recognition memory controls feeding is unclear. Here, we show that the nematode Caenorhabditis elegans forms a memory of particular foods after experience and displays behavioral plasticity, increasing the feeding response when they subsequently recognize the fam...
متن کاملMeasuring Food Intake and Nutrient Absorption in Caenorhabditis elegans
Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bac...
متن کاملMate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate.
Much of animal behavior is regulated to accomplish goals necessary for survival and reproduction. Little is known about the underlying motivational or drive states that are postulated to mediate such goal-directed behaviors. Here, we describe a mate-searching behavior of the Caenorhabditis elegans male that resembles the motivated behaviors of vertebrates. Adult C. elegans males, if isolated fr...
متن کاملAxotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans
The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 6 شماره
صفحات -
تاریخ انتشار 2012